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Induction of orientational order in the isotropic phase of a nematic liquid crystal

M. Simões,* P. R. Fernandes,† A. J. Palangana,† and S. M. Domiciano
Departamento de Fisica, Universidade Estadual de Londrina, Campus Universitario, 86051-970, Londrina (PR), Brazil

~Received 10 January 2001; revised manuscript received 1 May 2001; published 23 July 2001!

The orientational properties of an isotropic dense liquid composed by anisotropic molecules, such as a liquid
crystal in an isotropic phase, is studied. Using a Langevin-like equation it will be shown that the rotational
motion of each molecule can be divided in two elements describing two kinds of physical motion. The first
describes the Brownian rotational motion and another the coherent rotation induced by the external fields. It
will be shown that, even at the isotropic phase, an order parameter describing the mean degree of alignment of
the molecules around a given point can be defined. This order parameter also separates the order coming from
the coherent motion from the order generated by the anisotropy in the thermal fluctuations. At the end the
proposed model is compared with an experiment and it is shown that the coherent motion is enough to explain
the experimental results.
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I. INTRODUCTION

Many thermodynamical properties of the nematic liqu
crystals~NLC! are direction dependent and, certainly, the
macroscopic anisotropies are due to the characteristic m
scopic form of its constituents’ molecules. One essen
property of the nematic phase is that these molecules pre
long range orientational order@1,2# while, at the isotropic
phase, the amplitude of their vibrations becomes so large
any correlation between their orientation decays with d
tance and any overall orientation disappears. Usually,
nematic alignment may be controlled with changes in
molecular concentration or temperature and, by this pro
dure, a nematic-isotropic phase transition can be produ
@2,3#. Nevertheless, with the aid of an external induction,
isotropic phase of these liquids may exhibit some signals
the characteristic order of the nematic state; electric
magnetic fields, and even a fluid flow, are used to align
molecules of these materials at the isotropic phase.

In this paper the external induction of these molecu
alignments on isotropic liquids composed by anisotro
molecules will be studied. We show that they may be und
stood as a result of two distinct competing causes; the co
ent torques provoked by the external fields that, acting
susceptible anisotropic molecules, incite a regular alignm
and the Brownian aleatory fluctuations that look for the d
struction of any uniformity. In the last section of this pap
we will compare our theoretical results with the case
which a shearing drag is used to induce local order to th
systems. Some experimental measurements will be prese
and compared with our theoretical achievements.

The competition between the induction of a coher
alignment and the Brownian tendency for chaos may be
mulated using any one of the two distinct, but equivale
approaches; or the Smoluchowski equation or the Lange
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equation@4#. The Smoluchowski equation has already be
used in the study of the alignment of rigid rod-like polyme
in dilute solutions@4# but, up to our knowledge, the case
high concentrated solution, the liquid crystalline solution
isotropic phase, has not been studied. A Langevin formu
tion will be proposed in this work. The choice for this fo
mulation is due to the fact that some of the resulting eq
tions can be easily interpreted in terms of the us
differential equations of the classical mechanics. Furth
more, the entire formalism can be understood as an exten
of the balance of torques equation@1,5–8# to the isotropic
phase.

This paper will be divided into three main sections. In t
first one a general Langevin’s theory describing the alig
ment of anisotropic molecules in dense fluids will be pr
posed. In the sequence, this approach will be applied to
scribe the behavior of the order parameter of an isotro
phase subjected to an external induction of order. Finally,
theory will be specialized to study the alignment induced
a shearing drag@9–12# and the results will be compared wit
some experimental data.

II. LANGEVIN’S EQUATION FOR THE BROWNIAN
MOLECULAR ROTATIONAL MOTION OF NEMATIC

LIQUIDS AT THE ISOTROPIC PHASE

A. The Langevin’s equation

Let us consider a liquid composed of uniaxial anisotro
molecules at the isotropic phase. Under these circumsta
the correlation between the molecular orientations at diff
ent points of the sample is so small that any observed or
tational order cannot result from the usual thermodynam
stability, but it must be a consequence of some external
duction. The aim of this section is to present a theory
scribing the mechanism by which this externally induc
alignment can be realized. It will consider all torques that
on a given molecule: the aleatory torques and viscous fo
of the particles that are in the neighborhoods of a molec
will be added to the external forces acting on the partic
The resulting total torque will describe the rotational moti
of the particle. To describe the rotation of a molecule it w
©2001 The American Physical Society07-1
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be assumed that the position of its center of mass is ir
evant and that the unique physically important coordinat
the one fixing its orientation,û, which will be taken as a
unitary vector that gives the direction of the molecular a
isotropy.

As a consequence of our approach, an expression to e
torque that acts onû must be considered. Among them, th
form to be attributed to the rotational viscosity of a den
liquid is the most challenging one. Here, the same gen
hypothesis usually assumed for the nematic liquid will
extended to the isotropic phase; the viscosity is determi
by the differences of velocities,] iVj , around the positions o
the molecule. Furthermore, as usual@1,5#, when we consider
the symmetric and the antisymmetric parts of the shearin

] iVj5
1
2 F i j 1

1
2 V i j , ~1!

where

F i j 5
1
2 ~] iVj1] jVi ! and V i j 5

1
2 ~] iVj2] jVi !, ~2!

we see that a unique term proportional to] iVj cannot take
care of all viscosity coming from the interaction of a mo
ecule with the motion in its neighborhoods. The antisymm
ric part V i j describes the rotation of the matter around
molecule with angular velocity

vW 5¹W 3VW 5~Vyz ,Vzx ,Vxy!, ~3!

and, as the viscosity can only exist when the own rotation
the molecule,dtû, is different from the angular velocity o
its surroundings, the antisymmetric part of the shearing d
] iVj must be taken into account through a term with the fo

NW 5vW 3û2
dû

dt
. ~4!

That, using coordinates components, can be written as

Ni5~vW 3û! i2
dui

dt
52S V i j uj1

dui

dt D . ~5!

By another side, the symmetric part of the shearing,F i j
cannot be compensated by any rigid motion of the molec
@this is an essential fact for the interpretation of Eq.~9!,
below#. So, if we suppose that the viscosity of the molec
under rotation is dominated by the linear components,
torque resulting from this viscous process must have
form

L i52g1
isoS V i j uj1

dui

dt D2g2
isoF i j uj52g1

isodui

dt
2Gi j uj

~6!

where

Gi j 5g1
isoV i j 1g2

isoF i j ~7!

andg1
iso andg2

iso are the viscosity coefficients that couple t
antisymmetric and symmetric parts ofGi j to the differential
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equation that describes the rotation of the molecules.
course, these coefficients are analogous to the usual
tional coefficientsg1

iso andg2
iso of the nematic phase@1#. At

the isotropic phaseg1
iso andg2

iso are local parameters describ
ing the viscous torques acting on the anisotropic molecu

Now, the interaction between the anisotropic molec
and an external field will be considered. Without loss of ge
erality, we can consider an external magnetic fieldHW . So, the
simplest form to this torqueFW H ,

~FH! i5x~HW •û!Hi , ~8!

is the same of the aligned nematic phase, wherex is the
magnetic susceptibility.

We will consider now an important effect acting on th
molecules at the isotropic phase, the Brownian motion. T
particles move in a thermal bath being constantly pushed
the action of random forces,Fi(t), coming from the aleatory
nature of its interactions with its neighborhoods. Furth
more, this force must be in accord with the statistical m
chanics of the Brownian oscillatory motion of anisotrop
particles@4# and, consequently, it must satisfy the usual
lations

^Fi~ t !&50 and ^Fi~ t !F j~ t8!&52d i j g1
isokBT d~ t2t8!.

~9!

Observe that the second one of the above equations g
a realization of the fluctuation dissipation theorem~FDT!
and thatg2

iso is not present on it. As our theory considers tw
viscosity coefficients and only one of them,g1

iso, appears in
Eq. ~9! one may be puzzled about the role of the other o
g2

iso, in the FDT. From a practical point of view we can sa
that, under the assumption of a ‘‘white’’ spectrum for th
random fluctuations, the form assumed to Eq.~9! leads to a
correct expression to the equipartition theorem and
would be enough to justify our choice~see, for example, Ref
@13#!. Nevertheless, we can justify the absence ofg2

iso on the
FDT with a much more profound argument. Actually, as w
will see below, our model is restricted to rotations. Furth
more, as was stated in the sequence of Eq.~5!, the symmetric
part of ] iVj describes the viscous coherent motions of
neighborhoods of the molecule that acts in such a way
change their molecular shape. Consequently, the coeffic
g2

iso should be related to dissipations coming from the int
nal molecular vibrations such as those, for example, that
pear when longitudinal oscillations are being considered.
Eq. ~9! says that dissipations through these kinds of fluct
tions are not being considered by our model and, as we
considering uniaxial molecules, the above assumption allo
us to assume that the statistical mean length of the an
tropic axis û is fixed. So, we can express the absence
radial fluctuations saying that

^û2&5^û0
2&51. ~10!

To complete the physical elements that must be presen
an equation describing the rotation of an anisotropic m
ecule the inertial term for the molecular rotations must
7-2
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included. It is given byI dŴ/dt, whereI is the moment of
inertia, per unit volume, for rotations in which the long ax
û changes its direction, andŴ 5û3dû/dt is the local an-
gular velocity ofû.

Adding all the above components we obtain

I
dŴ

dt
1x~HW •û!û3HW 1g1

isoû3
dû

dt
1g1

isoû

3V•û
→

1g2
isoû3F•û

→
2û3FW 50W , ~11!

whereV•û
→

andF•û
→

are notations for the scalar product
the symmetric and antisymmetric tensorsV i j and F i j with
the vectorû. Notice that the above equation is similar to t
balance of torques equation for the nematic phase@1,5#. The
fundamental, and conceptual, difference between them is
the balance of torques equation deals with a thermodyna
cal situation where the aggregating elastic forces domin
the scenario, leading to a non-null and continuous value
the statistical meann̂5^û&. Otherwise, in the isotropic
phase, the elastic forces become negligible when comp
with the action of the random torquesû3FW (t). Essentially,
we can say that the difference between the two equation
that in the isotropic phase a Brownian disordering force s
stituted the elastic aligning interaction between the doma
of the nematic liquid.

Now, asdŴ/dt5û3d2û/dt2, this equation can be writ
ten as

û3S I
d2û

dt2
1x~HW •û!HW 1g1

isodû

dt
1g1

isoV•û
→

1g2
isoF•û
→

2FW D
50W , ~12!

which leads to

I
d2û

dt2
1g1

isodû

dt
1Ĝ•û1bû5FW . ~13!

Whereb is a constant resulting from the fact that Eq.~12! is
formally equivalent to the equationû3XW 50, that implies
that XW 52bû, and the components ofĜ are given by

G i j 5xHiH j1Gi j , ~14!

whereGi j is given in Eq.~7!.
Let us make some comments about the meaning of

parameterb introduced in the above equation. Notice th
Eq. ~12! expresses the fact that the forces acting onû do not
change its length, but only rotate it. Furthermore, due to
form by whichb was introduced it is no more than a degr
of freedom acquired by the solutions of Eq.~13! when it is
imposed that these solutions would also be solutions of
~12!. Therefore once the solutions of Eq.~13! are found they
would depend on the free parameterb that is free to be
adjusted to represent this constraint. In this senseb behaves
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like a Lagrange multiple of our theory and, due to the fo
by which it appears in Eq.~13!, it could be used to fix the

value of the unitary vectorû, û251. Observe that this con
dition is not completely equivalent to Eq.~10!. Equation~10!
comes from our interpretation for the assumed form to
FDT, while the above result follows from the imposition th
the balance of torques equation is restricted to the descrip

of rotations. That is, in one of these equations the length oû
is strictly fixed while in the other it is its corresponding me
value that is fixed. In this paper we will work with the mea
values of Eq.~13!, these two conditions will be used indis
tinctly.

As Eq. ~13! describes the sum of all torques acting on
molecule it will be called by extended balance of torqu

equation. The presence of the stochastic interaction,FW , and
the absence of the elastic term~expressed through spatia

derivatives! led us to the conclusion that the fieldû may not
have a continuous behavior. So, the orientation of a molec
can only be understood as a statistical parameter that rev
its observable values when some average is performed. In
next section we will show that it is possible to regard t
rotational motion described by Eq.~13! as composed of two
components, one of them describing the thermal fluctua
characterizing the Brownian motion and another one desc
ing the coherent rotation of the particle provoked by t
action of the external fields,G i j . The division of the rotation
of the particle in these two terms will support all furth
development presented below.

At the end of this work some mathematical consequen
of Eq. ~13! have been introduced as an appendix. When n
essary we quote these results.

B. Coherent and incoherent rotations

Here, the physical properties of the solutions of Eq.~13!
@or Eq. ~11!#, which describe the rotational movement of th
molecule will be studied. The formalism that we will app
to this problem will separate these rotations into two disti
classes; the stochastic rotation due to the aleatory fo
given in Eq. ~9! and the coherent rotation induced by th
action of the external fields contained inĜ. These results can
be obtained when the solution of Eq.~13! is written as

ui~ t !5ui
0~ t !1E t

G i~ t2t8!Fi~ t8!dt8, ~15!

where ui
0(t) is a solution of the homogeneous part of E

~13! andG i(t2t8) is the Green’s function of the differentia
equation

I
d2G i~ t !

dt2
1g1

isodGi~ t !

dt
1(

j 51

3

G j
i G j~ t !1bG i~ t !5eid~ t !.

~16!
7-3
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In this paper the sums’ rule for repeated indices will not
used, sums will be written explicitly.

Let us now consider the statistical mean^ui(t)& of Eq.
~15!. Of course,

^ui~ t !&5^ui
0~ t !&1E t

Gi~ t2t8!^Fi~ t8!&dt85^ui
0~ t !&

5ui
0~ t !, ~17!

where we have used the relation^Fi(t8)&50, given in Eq.
~9!. So, the stochastic forceFW (t) does not change the gener
trends of the free motion; in the mean the particle follows
same path that it would have in the absence ofFW (t). Never-
theless, if averages were not performed, a close view of
trajectory of the particle would detect the effect of the th
mal agitation; the particle does not rotate continuously,
executes a zigzagging rotation for whichui

0(t) is the mean
value. So, the results of Eq.~17! allow us to substitute the
tortuousness line giving the actual orientation of the part
at each instant by a region where its orientation will be fou
with certitude. Along each direction the size of this regi
can be evaluated by computing the fluctuation parameterBi ,
given by

Bi5^@ui~ t !2ui
0~ t !#2&

5E E G i~ t2t18!G i~ t2t28!^Fi~ t18!Fi~ t28!&dt18dt28

52g1
isokBTE @G i~ t2t8!#2dt8. ~18!

Notice that, as long as theG j(t) may be different for the
different directionseW i , the fluctuation parametersBi may be
also different for the different directions. As we will se
ahead, these anisotropies in the orientational fluctuations
induced by the external fieldsG i j acting on the system. In th
Appendix, Eq.~A20!, we have shown that the sum of all o
these parameters is given by

(
i

Bi5(
i 51

3
kBT

b1l i
, ~19!

wherel i are the eigenvalues of the operatorĜ, defined in
Eq. ~14!. From this equation we see that the size of the th
mal oscillations depends on the values assumed by the
rameterb . So, the value ofb can be fixed through the siz
of these fluctuations. In order to do this we remember thaui
gives the instantaneous orientation of a rigid molecu
Therefore at any instant it must satisfy the relation

(
i 51

3

ui
251. ~20!

Using Eq.~15! we find
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i 51

3

^ui
2&5(

i 51

3 K S ui
0
~ t !1E t

G i~ t2t8!Fi~ t8!dt8 D L 2

5(
i 51

3

ui
0~ t !21(

i 51

3

Bi

5(
i 51

3

@ui
0~ t !#21(

i 51

3
kBT

b1l i
, ~21!

where we have used the results of the Appendix, Eq.~A18!.
Furthermore, when the external fieldĜ is absent the ther-

mal oscillations would completely dominate the vibrations
the molecules and a coherent path would not exist, tha
ui

0(t)50. Moreover, asl i are the eigenvalues ofĜ we
would also havel i50. So, under these conditions

(
i 51

3

^ui
2&5(

i 51

3
kBT

b
5

3kBT

b
51, ~22!

which gives

b53kBT. ~23!

Hence, as it was explained below Eq.~14!, the parameterb
could be considered as a variational parameter fixing
value of ( i 51

3 ^ui
2& 51. Therefore now every time thatb

appears we will assume thatb53kBT. Consequently,

(
i 51

3

^ui
2&5(

i 51

3

@ui
0~ t !#21(

i 51

3
kBT

3kBT1l i
51, ~24!

and

(
i 51

3

@ui
0~ t !#2512(

i 51

3
kBT

3kBT1l i
. ~25!

Therefore if we separate from the coherent vectorui
0 its am-

plitude A and its directionwi
0 , ( i 51

3 (wi
0)251, that is

ui
05Awi

0 , ~26!

the above relation, Eq.~24!, gives for the amplitudeA

A 25(
i 51

3

@ui
0~ t !#2512(

i 51

3
kBT

3kBT1l i
512(

i 51

3

Bi .

~27!

Consequently, remembering our previous assertion
when Ĝ50 we would havel i50, we conclude that in the
absence of an external field we would also haveA50.
Therefore, as expected, only in the presence of an exte
field will there be a non-null amplitude for the coherent r
tation of the molecule.

However, the above equations are not enough to give
direction for the molecular orientationwi

0 as a function of the
time. In order to obtainwi

0 we notice that Eq.~20! leads to
the two following relations,
7-4
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(
i 51

3

ui

dui

dt
50 and (

i 51

3 S ui

d2ui

dt2
1S dui

dt D 2D 50, ~28!

that when used in Eq.~13! gives

(
i 51

3 H 2I S dui

dt D 2

1(
j 51

3

G i j uiuj2uiFi~ t !1bui
2J 50.

~29!

This equation is a first integral of the equation of motion, E
~13!, and as we will show it can be used to give the orien
tion followed by the coherent rotation of the molecule. B
according to Eq.~15!, whenFW →0 the functionui is reduced
to the description of the coherent rotationui

0 of the molecule.
So,

(
i 51

3 H 2I S dui
0

dt D 2

1(
j 51

3

G i j ui
0uj

01bui
0ui

0J 50 ~30!

is the differential equation that gives the time developm
of the coherent oscillation,ui

0 . Using ui
05Awi

0 and
( i 51

3 wi
0wi

051, we arrive at

2I S dA
dt D 2

1(
i 51

3 H 2IA2S dwi
0

dt D 2

1A 2(
j 51

3

G i j wi
0wj

0J 1A 2b

50. ~31!

The set given by Eqs.~27! and~31! completely determine the
coherent motion induced by the fluid flow; Eq.~27! gives the
amplitude of the coherent motion and Eq.~31! gives its di-
rection.

Now, when the external fieldsĜ are such that the time
variation of its eigenvalues allows us to makedtA50, Eq.
~31! becomes

(
i 51

3 H 2I S dwi
0

dt D 2

1(
j 51

3

G i j wi
0wj

0J 1b50, ~32!

that, with the external fields always having a small tim
variation, describes the time evolution ofwi

0 .
Finally, we will show that the above approach also se

rates the energy of the rotational motion in two compone
the energy associated with the coherent motion and the
ergy associated with the thermal fluctuations. To show h
this happens let us consider the kinetic energyEk associated
with the oscillation of the molecule

Ek5
1

2
I(

i 51

3 K S dui

dt D 2L . ~33!

Using Eq.~15! we found
02170
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Ek5
1

2
I(

i 51

3 K S dui
0

dt
1E ] tG i~ t2t8!Fi~ t8!dt8D 2L

5
1

2
I(

i 51

3 S dui
0

dt D 2

1
1

2
I(

i 51

3

Di . ~34!

The first term of this equation gives the energy contained
the coherent rotational motion of the molecule. The seco
term gives the energy content of the thermal fluctuations
the Appendix we have shown that

1
2 I(

i
Di5

3
2 kBT ~35!

which is just the result predicted by the equipartition the
rem; kBT/2 for each degree of freedom.

III. THE ORDER PARAMETER

A. Two components in the order parameter

In this section we study how the external fields can indu
local order to the orientations of the anisotropic molecules
a liquid. There are some subtle problems associated wi
sounding approach for this problem. One of them conce
the obtainment of a proper formulation of the orientation
order in the isotropic phase; in the nematic phase the o
parameter is a measure of the thermal molecular fluctuat
around the director’s direction and, as in the isotropic ph
the director does not exist, these questions must be care
handled. We will follow here the same path followed by t
formulation of orientational order for a suspension of ro
like polymers@4#; it will be assumed that the anisotropy o
the molecules is well described by a unique axis and
tensor giving the orientational order in a point will be give
in terms of the mean of directions of the molecules in t
neighborhoods of that point. Only when this mean orien
tion becomes non-null can one can say that, around
point, there is some order. Therefore if we could describe
physics of the orientation of a unique molecule at a point,
an averaging procedure, we will be able to follow the risi
of a local net orientation. Naturally, the essential differen
between this kind of orientation and the one observed in
nematic phase is that at the nematic phase the order foll
from the thermodynamical stability, and in this case it
induced by an external constraint.

Above, we have seen that the external fields containe
Ĝ induce a coherent rotational motion of the molecules of
fluid. Here we will see how this coherent motion can
detected by the measurements of the order parameter.ui
gives the orientation of a molecule in the liquid, the tens

Si j 5^uiuj2
1
3 d i j &, ~36!

describes its mean orientational properties and, when a
ages are taken, the corresponding order of the sample
order to develop this approach let us begin by consider
the mean of the productuiuj ,
7-5
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^uiuj&5 K S ui
0~ t !1E Gi~ t2t8!Fi~ t8!dt8 D

3S uj
0~ t !1E G j~ t2t9!F j~ t9!dt9 D L

5ui
0~ t !uj

0~ t !1Bi j ,

Bi j 5 H2g1
isokBTE t

@Gi~ t2t8!#2dt8J d i j 5Bid i j . ~37!

From this result it follows that

Si j 5ui
0~ t !uj

0~ t !2 1
3 ~d i j 23Bi j !. ~38!

Nevertheless,

1

3
~d i j 23Bi j !5

1

3
~123Bi !d i j

5
1

3 F S 12 (
k51

3

BkD d i j 1S (
k51

3

Bk23Bi D d i j G
5

1

3
A 2d i j 1D i j , ~39!

D i j 53F S (
k

Bk

3
D 2Bi

G d i j , ~40!

where Eq.~27! has been used. Therefore from Eqs.~18! and
~26! one obtains

Si j 5A 2~wi
0wj

02 1
3 d i j !1D i j . ~41!

Along the next sections the meaning of these two terms
be discussed in detail. Evidently, the first one expresses
order induced by the coherent motion and will be called
coherent order parameter. The other term,D i j , follows from
the anisotropy introduced in the thermal fluctuations by
external fields and will be called by thermal order parame
As we will see this name is justified by the fact that it is
the order of the thermal fluctuations.

B. Thermal order parameter and the anisotropy
on the Brownian fluctuations

Let us consider the thermal order parameterD i j . As dis-
cussed in the Eq.~18!, it comes from the anisotropy pro
voked on the fluctuation parameter,Bi , by the external
fields. That is, in Eq.~39! the term(kBk/3 gives the mean o
the fluctuations parameters, while the isolated termBi gives
the fluctuations along one fixed directioneW i . Therefore, the
difference,D i j 53@((kBk/3)2Bi #d i j , is a measure for the
anisotropy on these fluctuations. In a ‘‘free’’ isotropic pha
(Ĝ50) these fluctuations are equal along all directions a
we would haveD i j 50. Nevertheless, as explained in E
~18!, an external field introduces anisotropies onBi leading
to a non-null value toD i j .
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But, joining Eq.~39! with Eqs.~18! and ~19! we have

D i j 53F S (
k

Bk

3
D 2Bi

G d i j

53kBTS 1

3 (
k51

3
1

3kBT1lk

22g1
isoE @G i~ t2t8!#2dt8D d i j . ~42!

In order to evaluate this term let us use the bases formed
the eigenvector ofG i j . Using the results found in the Appen
dix we have

E dt8@G a~ t2t8!#25
1

2 g1
iso~3kBT1la!

. ~43!

Therefore

Dab53kBTH 1

3 (
k51

3
1

3kBT1lk
2

1

3kBT1laJ dab

5kBTH (
kÞa

3
1

3kBT1lk
22

1

3kBT1laJ dab . ~44!

Notice that, independently of the values assumed by the
genvalueslk, this expression would be of the order ofkBT,
which characterizes the size of the thermal agitation. In
next section we will show that the coherent order parame
is not proportional tokBT and, for a realistic system, dom
nates the order of the system.

C. Coherent order parameter

According to Eq.~41! the coherent order parameter,Si j
0 ,

is given by

Si j
0 5A 2~wi

0wj
02 1

3 d i j !, ~45!

whereA 2 is given by Eq.~27! andwi
0 is the solution of Eq.

~31!.
As wi

0 is time dependent this tensor also is time dep
dent. For the cases for whichwi

0 has a small rotational fre
quency this time dependence could be easily detected in
periments. But, in general, the inertial momentum appear
in Eq. ~31! is so small that the rotational frequency ofwi

0

becomes so high that the time dependence of Eq.~45! would
be undetectable. Furthermore, it is easy to see that the
tional frequency ofwi

0 resulting from Eq.~31! need not be
constant. When this happens the molecule does not ro
spending an equal amount of time for all directions; the
will be some directions along which it points for more tim
However, if the frequency of rotation of the molecule is hig
enough, the orientations in which the molecule stays
more time may dominate the scenario and in a measurem
7-6
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some orientational order would be detected. Under th
conditions the time average of Eq.~45! would reveal such
orientational order. So,

S̄i j
0 5^A 2~wi

0wj
02 1

3 d i j !& t , ~46!

where^x& t gives the time average ofx.
Usually, the tensor giving the order parameter cannot

directly measured and the order in the system is measure
the scalar that is obtained by the contraction ofSi j with the
vector giving the direction along which the order is to
detected. So, if we measure the order parameter along
direction

nW 5 iW cosw1 jW sinw, ~47!

the scalar

S̄0~w!5 3
2 ninj S̄i j

0 ~48!

measures the coherent order of the system along the dire
nW .

D. Symmetric and antisymmetric parts of G i j

In the study so far presented the order parameter has
separated into two components. One, accounting for the
isotropy introduced in the fluctuation by the external field
and another, accounting for coherent motion induced on
molecules by the fluid flow. Now, some symmetrical prop
ties of the operatorĜ will be used to determine the propertie
of the order parameter.

For example, as we have stressed above only when
time evolution ofẇi

0 is nonuniform is a non-null value fo

Eq. ~45! found. But, according to Eq.~46! the value ofẇi
0 is

essentially determined by( i , jG i j wi
0wj

0 . So, a pure antisym
metric tensorG i j leads to a zero in this sum, and the orie
tational order parameter becomes null. That is, this reaso
reveals that the direction of the orientational order parame
S̄i j

0 , is fixed by the symmetric part ofG i j . An important
consequence of the above development is that a pure
symmetric tensor cannot produce any order in the alignm
of the molecules.

IV. ORDER INDUCTION WITH THE USE
OF FLUID FLOW

A. A bidimensional shearing drag

Now the tensorG i j will be restricted to the description o
a bidimensional fluid flow. That is, along the directioneW z
there is not relevant fluid flow,]zVi50, i 5(x,y,z), and the
external fieldHi is assumed to be null. The advantage of t
simplification is that it will furnish an immediate applicatio
of our model. For this situation theeW z components of the
tensor G i j 5Gi j 5g1

isoV i j 1g2
isoF i j becomes G iz50, i

5(x,y,z). So, the solution of Eq.~A9! requires the study o
the three-dimensional problem
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Ĝ•vW a5l (a)vW (a), ~49!

that, save for the trivial solution

l350 and ~vx
3!25~vy

3!25~vz
3!25 1

3 , ~50!

is reduced to the bidimensional problem

F g2
isoFxx g2

isoFxy1g1
isoVxy

g2
isoFxy2g1

isoVxy 2g2
isoFxx

G Fvx

vy
G5lFvx

vy
G ,

~51!

where we have used the continuity equationFxx1Fyy50.
As it is being considered a bidimensional flow it can

supposed that the coherent motion of the molecule happ
in the plane perpendicular to the plane of the shearing. S

wW 5 iW cosu1 jW sinu, ~52!

where the time evolution ofu describes the rotation ofwi
0 .

Using these variables it is found

S̄0~w!5
A 2

3
^3 cos2~u2w!21& t .

In order to obtain the time evolution ofu we use Eq.~32!
and obtain

I(
i

S dwi
0

dt D 2

5b1(
i , j

G i j wi
0wj

0 . ~53!

Using the coordinate system given in Eq.~52! and the
incompressibility of the fluid, we obtain

I S du

dt D
2

5b1AFxx
2 1Fxy

2 sin 2~u1d!, ~54!

where

d5 1
2 arctan~Fxx /Fxy!. ~55!

These equations give the time evolution of the angular p
tion u as a function of the shearing drag. As it is suggeste
the beginning of this section it is the nonuniformity ofu̇ that
will produce an orientational order on the molecules of t
sample; during the time the molecules will be found for mo
time pointing to one direction than to another. This equat
is analogous to an equation for the oscillation of a particle
the one-dimensional conservative potentialU(u)5

2AFxx
2 1Fxy

2 sin 2(u2d). From this equation we see that th
relative values ofb53kBT and AFxx

2 1Fxy
2 determine the

kind of rotational motion of the molecule. Three differe
regions

AFxx
2 1Fxy

2 50, 0,AFxx
2 1Fxy

2 ,3kBT,

and AFxx
2 1Fxy

2 >3kBT ~56!

characterize these motions. ForAFxx
2 1Fxy

2 50 we would
haveA50, therefore, there is not any kind of alignment. F
7-7
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the second situation the particle rotates assuming all va
of u. But, because there are regions ofu in which the particle
stays for more time, some order will be found in this regio
Finally, whenAFxx

2 1Fxy
2 >3kBT, the rotational motion of

the particle does not assume all values ofu, and its oscilla-
tory motion becomes restricted to some regions of the
main of u, existing a clear mean alignment.

In order to compute these time averages, Eq.~54! is used
to make

dt5
du

1

I
AFxx

2 1Fxy
2 A@«1sin 2~u1d!#

, ~57!

where«5b/AFxx
2 1Fxy

2 . So,

S̄0~w!5
A 2

3
^3 cos2~u2w!21& t

5
A 2

6

1

P~«!
E

R

@3 cos 2~u2w!11#du

A«1sin 2~u1d!
, ~58!

where

P~«!5E
R

du

A«1sin 2~u1d!
, ~59!

and the indexR under the integration symbol means that t
integration is restricted to the regions where the square
appearing in Eq.~59! gives a real number.

Making x5u1d, we have

S̄0~w!5
A 2

6 H 1

P~«!
E

R

3 cos 2@x2~d1w!#dx

A~«1sin 2x!
11J

5
A 2

6 H 3 sin 2~d1w!
1

P~«!
E

R

sin 2~x!dx

A~«1sin 2x!
11J .

This equation gives the general expression for the co
ent order parameter. It can be further simplified if we obse
that

R~«!5
1

P~«!
E

R

sin 2~x!dx

A@«1sin 2~u1d!#

52«1~11«!

ES f,
2

11« D
FS f,

2

11« D , ~60!

where f5(1/4)@p12 arcsin(«)#, F(f,k)
5*0

fdu/A12k2sin2u is the elliptical integral of first class
and E(f,k)5*0

fA12k2sin2udu is the elliptical integral of
second class. So,

S̄0~w!5
A 2

6
$3R~«!sin 2~d1w!11% ~61!
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gives, in the geometry discussed above, the temporal m
of the order attributed to the coherent rotation of the m
ecules.

Let us consider also the amplitudeA of the coherent fluid
flow. We will compute it in the planar geometry given by E
~52! where the eigenvalues are given by Eqs.~50! and ~51!,
l50, andl56l̃, therefore,

A 25S 12(
i

kBT

3kBT1l i D 5
2l̃2

3@ l̃229~kBT!2#
. ~62!

So, there are two cases to be considered,l̃2,9(kBT)2 and
l̃2.9(kBT)2. The first case leads to an imaginary amplitu
and, as for any realistic system we would havel̃2

@9(kBT)2, it has no physical interest. Consequently, fro
now on we will assume

A 2. 2
3 . ~63!

B. The experiment

According to the theory developed above, external fie
may induce order in the alignment of the anisotropic m
ecules. Furthermore, due to the form of Eq.~61! this order
depends on the variables:~a! the direction in which the orde
is measured, given by the anglew of Eq. ~47!; ~b! a relation
between the symmetric parts of the fluid flow, characteriz
by the parameterd, given in Eqs.~55! and~2!; ~c! the global
characteristics of the rotational properties of the traject
followed by the molecule, described by the parameterR(«),
as defined in Eq.~60!; and~d! the amplitudeA of the coher-
ent motion, given by Eqs.~62! and ~63!. So, in order to test
the above theory, its predictions will be compared with t
experimental results obtained when a change to some
these variables is done. Observe that there are two class
parameters. The ones,w and d, that are connected to th
geometry of the experimental arrangement, and the o
R(«) andA, that come from the dynamics of the rotation
the molecules. We hope that when the shearing drag beco
sufficiently high, these last ones become nearly constan
happened, for example, with the amplitudeA in Eq. ~63!.
Hence an easy way to test the validity of the relation giv
by Eq. ~61! is to change progressively the internal geome
of the sample and compare the corresponding experime
results with the predictions of the theory.

In order to perform such an investigation, a vessel fill
with potassium laurate, KL~26.89%!, decanol, DeOH
~6.34%!, and water~66.77%!, at the isotropic phase, wa
submitted to a shearing drag due to the falling of a meta
lamina along an inclined plane, put inside the sample. T
alignment induced by such shearing drag was obtai
through the measurement of the changes in the birefringe
along the direction of the gravitational field,w5p/2. For
each measurement the angle,f, between the direction of the
motion of the lamina and the gravitational field was chang
while the direction along with the birefringency was me
sured and remained fixed. This change in the angle of
inclined plane gives to us the geometrical change. The res
7-8
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ing data for the birefringency,Br, are shown in Fig. 1. The
relation between the birefringency and the order paramet
given by the known relation@14#

Br5aS2, ~64!

where a is a proportionality constant. In this equation th
order parameterS is composed of the terms presented in t
last section. One comes from the order imposed by the
herent motion and one comes from the anisotropy introdu
in the fluctuations by the fluid flow. So,

S5S̄0~w!1S̄D,

where S̄0(w) was defined in Eq.~61! and S̄D follows from
the application of Eq.~48!, S̄D53/2ninjD i j , to the thermal
order parameter, Eq.~44!. Above, it has been shown that th
thermal order parameter would be of order ofkBT and there-
fore it would be small when compared with the coherent
the order parameter. Consequently, the present analysis
be restricted to this last component. So, as the birefringe
was measured along the direction of the gravitational fi
we havew5p/2, and hence

S̄0~w!5
A 2

6
$23R~«!sin 2d11%.

According to Eq.~55! one has sin 2d5Fxx/AFxx
2 1Fxy

2 . In
order to compute the values of these terms we remember
Vx5V cosf, and that]x5cosf]r . So,

Fxx5]xVx5cos2 f ] rV.

Analogously,Vy5V sinf, and that]y5sinf]r , and

FIG. 1. Birefringency and transmittance as a function of
angle of the inclined plane in which a metallic lamina falls creat
a shearing drag. The angle was measured from the horizontal
and arbitrary unities were used in the measurement of the trans
tance. The dots represent the points obtained in the measure
and the continuous line gives the results of our model.
02170
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Fxy5
1
2 ~]xVy1]yVx!5 1

2 ~cosf sinf] rV1sinf cosf] rV!

5 1
2 ] rV sin 2f.

Therefore

sin 2d5
Fxx

AFxx
2 1Fxy

2
5

cos2 f] rV

Acos4 f~] rV!21
1

4
sin2 2f~] rV!2

5
cos2 f

Acos4 f1
1

4
sin2 2f

5cosf.

This is an important relation because it means that the
rameterd does not depend on the dynamical parameters
the experiment, such as the velocityV of the fluid. Therefore
it is a genuine geometrical parameter. So,

S̄0~w!5
A 2

6
$23R~«!cosf11%,

but, according to our previous discussion we have

B5aS25@S̄0~w!#25aS A 2

6
$23R~«!cosf11% D 2

5a~2b cosf11!2,

wherea5a(A/6)2 andb53R(«).
In order to compare the results of this theory with t

experimental data, shown in Fig. 1, we have looked for
values ofa andb that furnish the best adjustment for the
data. For our theory the value of the parametera is immate-
rial because~a! it contains the parametera that comes from
Eq. ~64! that is outside of our model and~b! it is a scale
factor and, in the experiment, the birefringency is also m
sured save a scale factor. So, to adjust the experimental
only the parameterb has physical significance. For the da
exhibited in Fig. 1 we have obtained

a51.92 and b50.87,

shown by the continuous line in Fig. 1.

V. CONCLUSION AND PERSPECTIVES

In this work we have presented a theory for the induc
alignment of the molecules of the isotropic dense flui
which at lower temperatures are in the nematic phase.
have applied this theory to the case in which the sampl
submitted to a shearing drag and the experimental res
agree with theory. An interesting aspect of this approach
that it can be applied to many experimental situations. Alo
the paper we stressed the action of the external fields
shearing drag, but any kind of action that causes a fluid fl
can be coupled to Eq.~13!. For example, through the use o
the Navier–Stokes equation we can study how the action

ne
it-
ent
7-9
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pressure gradients can induce local order in these anisotr
molecules and how this order travels along the sample.
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APPENDIX

Here, the solutions of the differential equation

I
d2û

dt2
1g1

isodû

dt
1Ĝ•û1bû5FW ~A1!

will be studied.
Let us begin by considering the case in which the exter

fields HW and Ĝ contained inĜ are considered nulls. Henc
this equation becomes

I
d2û

dt2
1g1

isodû

dt
1bû5FW . ~A2!

As the solution of this equation must fulfill the requireme
( i 51

3 ui
251, that means that the motion ofui happens on the

surface of a sphere, it must appear that this is a highly n
linear differential equation. But, as it was explained alo
the text, the parameterb is free to be adjusted to fix thi
condition. Therefore, taking advantage of this degree of fr
dom, the solution of this equation can be taken as the s
tion of the damped oscillator.

From Eq. ~A2! the Green’s functions,G 0
i (t), are deter-

mined by solving the differential equation

I
d2GW0~ t !

dt2
1g1

isodGW0~ t !

dt
1bGW0~ t !5dW ~ t !. ~A3!

As in Eq. ~15!, the index 0 indicates that for this paramet
the external fields are not being considered. Furtherm
observe thatG 0

i (t) does not depend on direction; on

through the external fields ofĜ is the anisotropy of the ex
ternal fields introduced in the Green’s function. By the us
procedures it can be shown that

G 0
j ~ t !5

1

2pE dv eivt

2Iv21 ig1
isov1b

for all j . ~A4!

Using this equation, the parameter

B0
i 52g1

isokBTE dt8@G0
( i )~ t2t8!#2 ~A5!

given by Eq.~19! can be computed forG 0
i . It is straightfor-

ward to show that
02170
pic

-

al

t

n-

e-
u-

r
e,

l

E dt8@G 0
( i )~ t2t8!#25

1

2pE dv

~2Iv21b!21~g1
isov!2

55
1

2bg1
iso

if b.0

pA 1

b2~g1
224Ib!

if b,0.

~A6!

Likewise, one can show that

E dt8@] tG 0
( i )

~ t2t8!#25
1

2pE v2dv

~2Iv21b!21~g1
isov!2

5
1

2g1
isoI

. ~A7!

Therefore

D0
i 52g1

isokBTE dt8@] tG 0
( i )~ t2t8!#25

kBT

I
. ~A8!

In the computation of the values ofB0
i and D0

i made

above the effect of the external fields, contained inĜ, was
not taken into account. In order to consider it, let us supp
that Ĝ is time independent or, at least, has a very small ti
variation. Furthermore, let us suppose thatĜ has a complete
set of eigenvalues,la, and eigenvectors,vW a, satisfying

Ĝ•vW a5l (a)vW (a). ~A9!

So we can make

û5 (
a51

3

ua~ t !vW a and FW 5 (
a51

3

Fa~ t !vW a, ~A10!

where the time dependence is put on the coefficientsua(t)
andFa(t). Putting these parameters in Eq.~A2! we obtain

F I
d2ua~ t !

dt2
1g1

isodua~ t !

dt
1~b1l (a)!ua~ t !GvW a5Fa~ t !vW a.

~A11!

That leads to the differential equation

I
d2ua~ t !

dt2
1g1

isodua~ t !

dt
1~b1l (a)!ua~ t !5Fa~ t !,

~A12!

for the direction of the eigenvectorvW a. As the eigenvalues
l (a) are ~presumably! different, the anisotropy of the prob
lem is restored. Furthermore, with the changeb1l (a)→b8
7-10
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the differential equations given by Eqs.~A2! and ~A12! be-
come formally identical. Therefore, along the directio
given by vW a, this differential equation describes force
damped oscillations, where the elastic constants are give
b1l (a). In order to obtain the law of transformation fo
these objects to the baseeW i we make

vW a5v i
aeW i , ~A13!

but, using Eq.~A10! we have

û5 (
a51

3

ua~ t !vW a5 (
a51

3

(
i 51

3

uav i
aeW i . ~A14!

So,

ui5 (
a51

3

uav i
a . ~A15!

Likewise

G i~ t2t8!5 (
a51

3

va
i G a~ t2t8!. ~A16!

Furthermore

ui
25 (

a51

3

(
b51

3

(
i 51

3

(
j 51

3

ubuav i
bv j

aeW i•eW j

5 (
a51

3

(
b51

3

(
i 51

3

ubuav i
bv j

ad i j

5 (
a51

3

(
b51

3

(
i 51

3

ubuav i
bv i

a5 (
a51

3

(
b51

3

ubuadab

5 (
a51

3

~ua!2. ~A17!

From these relations it follows that
s

-

02170
by

(
i
E dt8@G( i )~ t2t8!#25(

a
E dt8@G a~ t2t8!#2

5(
a

1

2g1
iso~b1l (a)!

, ~A18!

and

(
i
E dt8@] tG ( i )~ t2t8!#25(

a
E dt8@] tG (a)~ t2t8!#2

5(
a

kBT

I
53

kBT

I
. ~A19!

Therefore

(
i

Bi52g1
isokBT(

a
E dt8@G (a)~ t2t8!#25(

a

kBT

b1l (a)

~A20!

and

(
i

Di52g1
isokBT(

a
E dt8@] tG (a)~ t2t8!#25(

a

kBT

I

5
3kBT

I
. ~A21!
,
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