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Induction of orientational order in the isotropic phase of a nematic liquid crystal
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The orientational properties of an isotropic dense liquid composed by anisotropic molecules, such as a liquid
crystal in an isotropic phase, is studied. Using a Langevin-like equation it will be shown that the rotational
motion of each molecule can be divided in two elements describing two kinds of physical motion. The first
describes the Brownian rotational motion and another the coherent rotation induced by the external fields. It
will be shown that, even at the isotropic phase, an order parameter describing the mean degree of alignment of
the molecules around a given point can be defined. This order parameter also separates the order coming from
the coherent motion from the order generated by the anisotropy in the thermal fluctuations. At the end the
proposed model is compared with an experiment and it is shown that the coherent motion is enough to explain
the experimental results.
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I. INTRODUCTION equation[4]. The Smoluchowski equation has already been
used in the study of the alignment of rigid rod-like polymers
Many thermodynamical properties of the nematic liquidin dilute solutiong4] but, up to our knowledge, the case of
crystals(NLC) are direction dependent and, certainly, thesehigh concentrated solution, the liquid crystalline solution at
macroscopic anisotropies are due to the characteristic micrdsotropic phase, has not been studied. A Langevin formula-
scopic form of its constituents’ molecules. One essentiafion will be proposed in this work. The choice for this for-
property of the nematic phase is that these molecules preseflation is due to the fact that some of the resulting equa-
long range orientational orddf,2] while, at the isotropic tions can be easily interpreted in terms of the usual
phase, the amplitude of their vibrations becomes so large th4lifferential equations of the classical mechanics. Further-
any correlation between their orientation decays with dismore, the entire formalism can be understood as an extension
tance and any overall orientation disappears. Usually, thef the balance of torques equatiph,5-§ to the isotropic
nematic alignment may be controlled with changes in thePhase.
molecular concentration or temperature and, by this proce- This paper will be divided into three main sections. In the
dure, a nematic-isotropic phase transition can be produceifst one a general Langevin's theory describing the align-
[2,3]. Nevertheless, with the aid of an external induction, thement of anisotropic molecules in dense fluids will be pro-
isotropic phase of these liquids may exhibit some signals oPosed. In the sequence, this approach will be applied to de-
the characteristic order of the nematic state; electric angcribe the behavior of the order parameter of an isotropic
magnetic fields, and even a fluid flow, are used to align thé?hase subjected to an external induction of order. Finally, our
molecules of these materials at the isotropic phase. theory will be specialized to study the alignment induced by
In this paper the external induction of these moleculard shearing draf9—12] and the results will be compared with
alignments on isotropic liquids composed by anisotropicsome experimental data.
molecules will be studied. We show that they may be under-
stood as a result of two distinct competing causes; the coher- |I. LANGEVIN'S EQUATION FOR THE BROWNIAN
ent torques provoked by the external fields that, acting on MOLECULAR ROTATIONAL MOTION OF NEMATIC
susceptible anisotropic molecules, incite a regular alignment, LIQUIDS AT THE ISOTROPIC PHASE
and the Brownian aleatory fluctuations that look for the de-
struction of any uniformity. In the last section of this paper
we will compare our theoretical results with the case in Let us consider a liquid composed of uniaxial anisotropic
which a shearing drag is used to induce local order to thesmolecules at the isotropic phase. Under these circumstances
systems. Some experimental measurements will be presentéite correlation between the molecular orientations at differ-
and compared with our theoretical achievements. ent points of the sample is so small that any observed orien-
The competition between the induction of a coherenttational order cannot result from the usual thermodynamical
alignment and the Brownian tendency for chaos may be forstability, but it must be a consequence of some external in-
mulated using any one of the two distinct, but equivalentduction. The aim of this section is to present a theory de-
approaches; or the Smoluchowski equation or the Langeviscribing the mechanism by which this externally induced
alignment can be realized. It will consider all torques that act
on a given molecule: the aleatory torques and viscous forces
*Electronic address: simoes@uel.br of the particles that are in the neighborhoods of a molecule
"Permanent address: Departamento dsick) Universidade Es- will be added to the external forces acting on the particle.
tadual de MaringaAvenida Colombo, 5790, 87020-900 Maringa The resulting total torque will describe the rotational motion
(PR), Brazil. of the particle. To describe the rotation of a molecule it will

A. The Langevin’s equation
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be assumed that the position of its center of mass is irrelequation that describes the rotation of the molecules. Of
evant and that the unique physically important coordinate igourse, these coefficients are analogous to the usual rota-
the one fixing its orientationy, which will be taken as a tional coefficientsyy° and y5° of the nematic phaskl]. At
unitary vector that gives the direction of the molecular an-the isotropic phasgy° andy5° are local parameters describ-
isotropy. ing the viscous torques acting on the anisotropic molecules.
As a consequence of our approach, an expression to every Now, the interaction between the anisotropic molecule
torque that acts on must be considered. Among them, the and an external field will be considered. Without loss of gen-
form to be attributed to the rotational viscosity of a denseerality, we can consider an external magnetic fiéldSo, the
liquid is t_he most challenging one. Here, th_e same generﬁﬂimplest form to this torqué
hypothesis usually assumed for the nematic liquid will be
extended to the isotropic phase; the viscosity is determined
by the differences of velocities;V;, around the positions of
the molecule. Furthermore, as us{iJ5], when we consider

(Fu)i=x(H-0)H;, 8)

is the same of the aligned nematic phase, wheris the

the symmetric and the antisymmetric parts of the shearing magnetic susceptibility.

GiVj=7P;+30;, (1)
where
O =3(aVj+a;Vy) and Qy=3(4V;— Vi), (2

we see that a unique term proportional&; cannot take

We will consider now an important effect acting on the
molecules at the isotropic phase, the Brownian motion. The
particles move in a thermal bath being constantly pushed by
the action of random force§;;(t), coming from the aleatory
nature of its interactions with its neighborhoods. Further-
more, this force must be in accord with the statistical me-
chanics of the Brownian oscillatory motion of anisotropic

care of all viscosity coming from the interaction of a mol- Particles[4] and, consequently, it must satisfy the usual re-
ecule with the motion in its neighborhoods. The antisymmet/ations

ric part {);; describes the rotation of the matter around the

molecule with angular velocity

G=TXV=(0y, Qe 0y, 3

and, as the viscosity can only exist when the own rotation og

(Fi())=0 and (F;()F;(t"))=28;7:%sT a(t—t’).
9
Observe that the second one of the above equations gives

realization of the fluctuation dissipation theoréRDT)
nd thaty5° is not present on it. As our theory considers two

the moleculedu, is different from the angular velocity of viscosity coefficients and only one of thewlfo, appears in

its surroundings, the antisymmetric part of the shearing dra

€q. (9) one may be puzzled about the role of the other one,

d;V; must be taken into account through a term with the form,_iso

N=wXU dy 4
—wxu—a. (4)

That, using coordinates components, can be written as

- A dUi dUi
Niz(wXU)i—EI— Qijuj+a . (5)

By another side, the symmetric part of the shearibg,

cannot be compensated by any rigid motion of the molecul

[this is an essential fact for the interpretation of ES),

below]. So, if we suppose that the viscosity of the molecule?2

v5", in the FDT. From a practical point of view we can say
that, under the assumption of a “white” spectrum for the
random fluctuations, the form assumed to E).leads to a
correct expression to the equipartition theorem and this
would be enough to justify our choig¢eee, for example, Ref.
[13]). Nevertheless, we can justify the absence/$t on the
FDT with a much more profound argument. Actually, as we
will see below, our model is restricted to rotations. Further-
more, as was stated in the sequence of(kj.the symmetric
part of ¢;V; describes the viscous coherent motions of the
é‘leighborhoods of the molecule that acts in such a way to
change their molecular shape. Consequently, the coefficient
5° should be related to dissipations coming from the inter-

under rotation is dominated by the linear components, th@@! molecular vibrations such as those, for example, that ap-

torque resulting from this viscous process must have th

form
_ dy; : iso Ui
(6)
where
Gij = ¥5o0 + ¥5°0y, @
andy° and y5°

antisymmetric and symmetric parts Gf; to the differential

Qear when longitudinal oscillations are being considered. So,
Eq. (9) says that dissipations through these kinds of fluctua-
tions are not being considered by our model and, as we are
considering uniaxial molecules, the above assumption allows
us to assume that the statistical mean length of the aniso-

tropic axisu is fixed. So, we can express the absence of
radial fluctuations saying that
(U?)=(ug)=1. (10

To complete the physical elements that must be present in

are the viscosity coefficients that couple the an equation describing the rotation of an anisotropic mol-

ecule the inertial term for the molecular rotations must be
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like a Lagrange multiple of our theory and, due to the form
by which it appears in Eq.13), it could be used to fix the

value of the unitary vecton, u?=1. Observe that this con-
dition is not completely equivalent to EGLO). Equation(10)
comes from our interpretation for the assumed form to the
FDT, while the above result follows from the imposition that
W S du the balance of torques equation is restricted to the description
Igr Fx(H: UuxXH+ Vfouxa +yru of rotations. That is, in one of these equations the length of
is strictly fixed while in the other it is its corresponding mean
value that is fixed. In this paper we will work with the means
values of Eq.(13), these two conditions will be used indis-
N N tinctly.
where() -G and® - U are notations for the scalar product of  As Eq.(13) describes the sum of all torques acting on a
the symmetric and antisymmetric tensdédg and ®;; with molecule it will be called by extended balance of torques

the vectoru. Notice that the above equation is similar to the equation. The presence of the stochastic interacfiorand
balance of torques equation for the nematic pHasgl. The  the absence of the elastic terfexpressed through spatial
fundamental, and conceptual,. difference petween them is th@brivatives led us to the conclusion that the fie]dmay not

the balance of torques equation deals with a thermodynamiyaye 4 continuous behavior. So, the orientation of a molecule
cal situation wherg the aggregating elastic fprces domlnatgan only be understood as a statistical parameter that reveals
the scer?ar_lo, Ieadlnq 0 a non-null gnd c_ontmuogs VaIL_Je Qs observable values when some average is performed. In the
the statistical meam=(u). Otherwise, in the isotropic pext section we will show that it is possible to regard the
phase, the elastic forces become nggllgjble when compared;ational motion described by E¢L3) as composed of two
with the action of the random torques<F(t). Essentially, components, one of them describing the thermal fluctuation
we can say that the difference between the two equations igharacterizing the Brownian motion and another one describ-
that in the isotropic phase a Brownian disordering force subi-ng the coherent rotation of the particle provoked by the
stituted the elastic aligning interaction between the domaingtion of the external fields);; . The division of the rotation

included. It is given byl dW/dt, wherel is the moment of
inertia, per unit volume, for rotations in which the long axis
u changes its direction, and/ =uxdu/dt is the local an-

gular velocity ofu.
Adding all the above components we obtain

— . = . .
X Q- U+ y5°uxX®-u—UxXF=0, (11

of the nematic liquid. of the particle in these two terms will support all further
Now, asdW/dt=ux d?u/dt? this equation can be writ- development presented below.
ten as At the end of this work some mathematical consequences

of Eq. (13) have been introduced as an appendix. When nec-

. [ d& O [ I
0 IF+X(H-U)H+ ona“L YOO Ut 5D U F essary we quote these results.
t
=0, (12 B. Coherent and incoherent rotations
which leads to Here, the physical properties of the solutions of Ep)
. . [or Eq.(11)], which describe the rotational movement of the
d?u i du molecule will be studied. The formalism that we will apply

'ﬁ T dt +I-u+pu=F. 13 {0 this problem will separate these rotations into two distinct
classes; the stochastic rotation due to the aleatory forces

Whereg is a constant resulting from the fact that E&2) is ~ given in Eq.(9) and the coherent rotation induced by the
formally equivalent to the equatiof]x)?=0, that implies action of the external fields containedlin These results can

that X = _Ba, and the components & are given by be obtained when the solution of E@.3) is written as

Iii=xHiH;+G;;, 14 t
AT 1 ui<t>=u?<t>+f Gi(t—t")Fy(t")dt, (15)
whereG;j; is given in Eq.(7).

Let us make some comments about the meaning of the
Eare(lrlngterﬁ |ntrodutcr:1edf|ntt:1he tattr:OVf equatu?[_n. J\Ia::)'ce :hatwhere uiO(t_) is a golution of the hompgeneous part of _Eq.
g.(12) eXpresses the fact that (ne forces actinglado not - (13) andgi(t—t’) is the Green’s function of the differential

change its length, but only rotate it. Furthermore, due to th quation

form by which 8 was introduced it is no more than a degree

of freedom acquired by the solutions of EG3) when it is

imposed that these solutions would also be solutions of Eq.  , i 3

(12). Therefore once the solutions of E4.3) are found they |d AL n ,yisodg (1) n 2 Figj(t)_l_ﬁgi(t):ei 8(t)
would depend on the free paramet@rthat is free to be dt? bodt &) '
adjusted to represent this constraint. In this sehdehaves (16)
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In this paper the sums’ rule for repeated indices will not be 3 3 - 2
used, sums will be written explicitly. PRUHEDD <<ui°(t)+f g'(t—t’)Fi(t’)dt’)>
Let us now consider the statistical meén(t)) of Eq. =1 =1

(15). Of course, 3 3
=2 W+ 2 B
t i=1 i=1
() =(uf) + [ G-t )t =) ; ;
=S [, 2T (21)
=uf(), 17) =1 =1 B+

where we have used the relati¢f;(t'))=0, given in Eq. where we have used the results of the Appendix, (B48).

(9). So, the stochastic fordé(t) does not change the general  Furthermore, when the external fidldis absent the ther-
trends of the free motion; in the mean the particle follows theMal oscillations would completely dominate the vibrations of

same path that it would have in the absencé ). Never- thoe molecules and a Cohierent path Yvould not exlst, that is
theless, if averages were not performed, a close view of théi (1) =0- MoreO\i/er, as\' are the eigenvalues df we
trajectory of the particle would detect the effect of the ther-would also have\'=0. So, under these conditions

mal agitation; the particle does not rotate continuously, but

3 3
executes a zigzagging rotation for Whiuﬂ(t) is the mean D <u-2>= kB_T: 3keT -1 (22)
value. So, the results of Eq17) allow us to substitute the =Y =B B ’
tortuousness line giving the actual orientation of the particle )
at each instant by a region where its orientation will be foundvhich gives
with certitude. Along each direction the size of this region
9 9 B=3kgT. 23)

can be evaluated by computing the fluctuation paranikter

given by Hence, as it was explained below E@4), the parametep

012 could be considered as a variational parameter fixing the
Bi=([ui() —u; (H)]%) value of 33_,(u?) =1. Therefore now every time tha8
appears we will assume thgt=3kgT. Consequently,

_ j j Gi(t—t))Gi(t—ty)(F(t)F(ty)dtidts

3

: S kBT
S (=2 WP+ 3 =1 (29

=27‘f°kBTf [Gi(t—t) Pt (18) =t SkeTHN
and
Notice that, as long as th@'(t) may be different for the 3 3
different directionse; , the fluctuation parameteB; may be > W P=1-2, kB—T__ (25)
also different for the different directions. As we will see i=1 i=1 3kgT+\'

ahead, these anisotropies in the orientational fluctuations are _ _
induced by the external field; acting on the system. Inthe Therefore if we separate from the coherent veits am-
Appendix, Eq.(A20), we have shown that the sum of all of plitude A and its directionw, =%, (wf)?=1, that is

these parameters is given by

ud=Aw?, (26)
3
E B,= kBT_ ’ (19 the above relation, Eq24), gives for the amplituded
i =1 B+ 3 3 - 5
| i A= [W01)P=1-> ———=1-> B;.
where\' are the eigenvalues of the operalor defined in = i=1 3kgT+A\' =

Eq. (14). From this equation we see that the size of the ther- (27)
mal oscillations depends on the values assumed by the pa- . : .
rameterB . So, the value of3 can be fixed through the size Coqsequently, remembenng our previous assertion that
of these fluctuations. In order to do this we remembertipat WhenI'=0 we would havex'=0, we conclude that in the
gives the instantaneous orientation of a rigid molecule@Psence of an external field we would also haxe-0.

Therefore at any instant it must satisfy the relation Therefore, as expected, only in the presence of an external
field will there be a non-null amplitude for the coherent ro-

tation of the molecule.

3
E Ui2: 1. (20) However, the above equations are not enough to give the
i=1 direction for the molecular orientation® as a function of the
time. In order to obtairw? we notice that Eq(20) leads to
Using Eq.(15) we find the two following relations,
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3 3 3 0 2
dui dzui dui 2 1 dl-'Ii ) , , ,
21 Ui~ =0 and 2}1 (uiFJr(I =0, (29 Ek—§|i§1 E+J aGi(t—t)Fi(t")dt
0\ 2 3
that when used in Eq13) gives = 1|E dur + E| > D;. (34)
2 <1\ dt 2 -1
3 du 2 3
> [ — (_' +> FijUin—UiFi(t)+ﬁUi2 =0. The first term of this equation gives the energy contained in
i=1 dt i=1 the coherent rotational motion of the molecule. The second

(29 term gives the energy content of the thermal fluctuations. In
the Appendix we have shown that
This equation is a first integral of the equation of motion, Eg.
(13), and as we will show it can be used to give the orienta- . .
tion followed by the coherent rotation of the molecule. But, 2l Z Di=32ksT (35

according to Eq(15), whenF —0 the functionu; is reduced
to the description of the coherent rotatioi?wof the molecule. | 1ioh is just the result predicted by the equipartition theo-
So, rem; kgT/2 for each degree of freedom.

is the differential equation that gives the time developmen‘OC
of the coherent oscillationu?. Using ul=.Aw? and

2 3

+ FijUiOU?"'ﬂUiOUiO] -0 (30) IIl. THE ORDER PARAMETER
i=1

A. Two components in the order parameter

In this section we study how the external fields can induce
al order to the orientations of the anisotropic molecules of
3 0 0 : a liquid. There are some subtle problems associated with a
Zi- Wiwi =1, we arrive at sounding approach for this problem. One of them concerns
the obtainment of a proper formulation of the orientational
dA ) o 0 5 order in the_: isotropic phase; in the nematic phase the o_rder
=1 at +A 21 [ijw; Wi +A°B parameter is a measure of the thermal molecular fluctuations
= around the director’s direction and, as in the isotropic phase
=0. (31) the director does not exist, these questions must be carefully
handled. We will follow here the same path followed by the
formulation of orientational order for a suspension of rod-
like polymers[4]; it will be assumed that the anisotropy of
amplitude of the coherent motion and E§1) gives its di- the molgqules IS vv_eII de_scrlbed by.a uniqué axis anq the
tensor giving the orientational order in a point will be given

rection. in terms of the mean of directions of the molecules in the

2 3

=1

2 3 dw?
142 1
+E[ IA(Olt

The set given by Eq$27) and(31) completely determine the
coherent motion induced by the fluid flow; EQ7) gives the

Now, when the external fields are such that the time peighborhoods of that point. Only when this mean orienta-
variation of its eigenvalues allows us to matted=0, EQ.  {jon pecomes non-null can one can say that, around this
(31) becomes point, there is some order. Therefore if we could describe the

physics of the orientation of a unique molecule at a point, by
dwio 2 3 an averaging procedure, we will be able to follow the rising
>, [_I(W +2 FijWiOWjO] +B=0, (32  of alocal net orientation. Naturally, the essential difference
=1 =1 between this kind of orientation and the one observed in the
nematic phase is that at the nematic phase the order follows
that, with the external fields always having a small timefrom the thermodynamical stability, and in this case it is
variation, describes the time evolutionwf. induced by an external constraint.

Finally, we will show that the above approach also sepa- Above, we have seen that the external fields contained in
rates the energy of the rotational motion in two componentsf* induce a coherent rotational motion of the molecules of the
the energy associated with the coherent motion and the efryid. Here we will see how this coherent motion can be
ergy associated with the thermal fluctuations. To show howyetected by the measurements of the order parametey. If
this happens let us consider the kinetic endfgyassociated gjves the orientation of a molecule in the liquid, the tensor
with the oscillation of the molecule

Sij=(uiu;—35), (36)
3 2
1 dy L . . .
Ek:§|2 <(H) > (33 describes its mean orientational properties and, when aver-
=1 ages are taken, the corresponding order of the sample. In
order to develop this approach let us begin by considering
Using Eq.(15) we found the mean of the produetu;,
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<uiuj>:<(u?(t)+f gi(t—t’)Fi(t’)dt’)
X(U?(t)-i-f gi(t—t")Fj(t”)dt")>
=uP(t)u(t)+B;;,
Bij=[2yif°kBTft[gi(t—t’)]2dt’}5ij=Bi5ij. (37)

From this result it follows that

Sij=ul(Hud(t) — 3(&;—3By;). (39)
Nevertheless,
1 1
3(6j=3Bi))=3(1-3By) 4
1 3 3
=3 (1—;:‘,1 By | &+ Z Bk—3Bi>5ij}
1 2
:§A 5ij+AIJ! (39)
Ai=3 -B; |5y, (40)

where Eq.(27) has been used. Therefore from E@k8) and
(26) one obtains

PHYSICAL REVIEW E64 021707

But, joining Eq.(39) with Egs.(18) and(19) we have

> By
X

Aij:3 3 _Bi 5”
3
1 1
=3kgT| 2 >, ———
® (3 ,(21 3kgT+AK

—2yif°f [gi<t—t'>]2dt'>5i,-- (42)

In order to evaluate this term let us use the bases formed by
the eigenvector of j; . Using the results found in the Appen-
dix we have

1
dt'[Ge(t—t")]?=—r . 43
f LGE=t0F =5 Y593k T+ 43
Therefore
3
1 1 1
A,5=3kgT] = - 8,
p= "8 {3 2, 3kgT+\K 3kBT+7\“] g
° 1
—kgT -2 Sup.  (44)
B [k;a 3kgT+\ 3kBT+)\“] p

Notice that, independently of the values assumed by the ei-
genvalues\¥, this expression would be of the orderlgfT,
which characterizes the size of the thermal agitation. In the
next section we will show that the coherent order parameter
is not proportional tdkgT and, for a realistic system, domi-
nates the order of the system.

Along the next sections the meaning of these two terms will

be discussed in detail. Evidently, the first one expresses the
order induced by the coherent motion and will be called by

coherent order parameter. The other tefy,, follows from

C. Coherent order parameter

According to Eq.(41) the coherent order paramet&f] ,

the anisotropy introduced in the thermal fluctuations by thds given by

external fields and will be called by thermal order parameter.
As we will see this name is justified by the fact that it is of

the order of the thermal fluctuations.

B. Thermal order parameter and the anisotropy
on the Brownian fluctuations

Let us consider the thermal order paramelgr. As dis-

Si=A4wiw)-35), (45)

where A2 is given by Eq.(27) andwi0 is the solution of Eq.
(31).

As Wi0 is time dependent this tensor also is time depen-
dent. For the cases for which® has a small rotational fre-
quency this time dependence could be easily detected in ex-

cussed in the Eq(18), it comes from the anisotropy pro-
voked on the fluctuation parameteB;, by the external
fields. That is, in Eq(39) the termX,B,/3 gives the mean of
the fluctuations parameters, while the isolated t&ngives

periments. But, in general, the inertial momentum appearing
in Eq. (31) is so small that the rotational frequencwa’
becomes so high that the time dependence of(&5).would

2 be undetectable. Furthermore, it is easy to see that the rota-
the fluctuations along one fixed direptien. Therefore, the  tjonal frequency ofw? resulting from Eq.31) need not be
difference,Aj; =3[(XBy/3)—Bi]4j;, is a measure for the constant. When this happens the molecule does not rotate
apisotropy on these fluctuations. In a “free” isotropic phasespending an equal amount of time for all directions; there
(I'=0) these fluctuations are equal along all directions andavill be some directions along which it points for more time.
we would haveA;;=0. Nevertheless, as explained in Eqg. However, if the frequency of rotation of the molecule is high
(18), an external field introduces anisotropiesBnleading  enough, the orientations in which the molecule stays for
to a non-null value ta;; . more time may dominate the scenario and in a measurement
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some orientational order would be detected. Under these Poe= )@@ (49)
conditions the time average of EG5) would reveal such ’
orientational order. So, that, save for the trivial solution

= (A2(wPw) =3 8)e, (46) N=0 and (v)?=(vy)*=(v))?=3, (50

where(x), gives the time average f. is reduced to the bidimensional problem

. Usually, the tensor giving the.order parameter cannot be YD, 7'250‘1>xy + J"lsoﬂxy
directly measured and the order in the system is measured by | <o o
the scalar that is obtained by the contractiorSgfwith the Y2 Pxy™ V1 Sixy 72 Pxx
vector giving the direction along which the order is to be (51)
detected. So, if we measure the order parameter along tnﬁh

direction

Ux Ux

Uy Uy

ere we have used the continuity equatbp,+®,,=0

As it is being considered a bidimensional flow it can be

- - - supposed that the coherent motion of the molecule happens
n=1icose+]sing, (47) " in the plane perpendicular to the plane of the shearing. So,

the scalar W=1i cosf+] siné, (52

L(g)=2nn §°J (48)  where the time evolution of describes the rotation af? .
Using these variables it is found
measures the coherent order of the system along the direction ’

— A
n. S(¢)=—75(3cod(0-¢)~1);.

D. Symmetric and antisymmetric parts of I'; In order to obtain the time evolution @&fwe use Eq(32)
In the study so far presented the order parameter has be@hd obtain
;eparateq into two qomponents. Qne, accounting for t_he an- dul' 2
isotropy introduced in the fluctuation by the external fields, i
and a?cl)ther, accounting for coherent n):otion induced on the IE (_> _'8+E F”WQW?' (63
molecules by the fluid flow. Now, some symmetrical proper-
ties of the operatof will be used to determine the properties . USing the coordinate system given in E§2) and the

of the order parameter. incompressibility of the fluid, we obtain
For example, as we have stressed above only when the 2
time evolution ofw; is nonuniform is a non-null value for I at =B+ NP+ Piysin2(6+d), (54

Eq. (45) found. But, according to Eq46) the value ofw? is

essentially determined by, ;I';w’w . So, a pure antisym- where

metric tensor’;; leads to a zero in this sum, and the orien- L

tational order parameter becomes null. That is, this reasoning d=; arctai ®,,/dy,). (55)

reveals that the direction of the orientational order parameter
= fixed by the svmmetric part oF. . An important These equations give the time evolution of the angular posi-
0 1S fix y Y P ij - P tion @ as a function of the shearing drag. As it is suggested at
consequence of the above development is that a pure antl-
e beginning of this section it is the nonuniformity @that

symmetric tensor cannot produce any order in the alignment . .
will produce an orientational order on the molecules of the

of the molecules. sample; during the time the molecules will be found for more
time pointing to one direction than to another. This equation
is analogous to an equation for the oscillation of a particle in
the one-dimensional conservative potentidl(6)=

A. A bidimensional shearing drag \/CID2 +(I>2 ,Sin2(6—d). From this equation we see that the

Now the tensoil;; will be restricted to the description of relative values of3=3kgT and yd;,+ d;, determine the
a bidimensional fluid flow. That is, along the directiég kind of rotational motion of the molecule Three different

IV. ORDER INDUCTION WITH THE USE
OF FLUID FLOW

there is not relevant fluid flow,V;=0, i=(X,y,z), and the regions

external fieldH; is assumed to be null. The advantage of this ) 7 v ava

simplification is that it will furnish an immediate application Dt Pry=0, 0= VPt Dy <3kaT,

of our model For thls situation the, components of the and ‘/q)X7X+ cpxzyangT (56)
tensor I Q,J + 95 <I>,J becomes I';,=0, i

=(Xx,Y,2). So the solutlon of EqLA9) requires the study of characterize these motions. FQFI)XZX-F (szy:O we would
the three-dimensional problem have A=0, therefore, there is not any kind of alignment. For
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the second situation the particle rotates assuming all valuegives, in the geometry discussed above, the temporal mean
of 6. But, because there are regionsadgh which the particle  of the order attributed to the coherent rotation of the mol-
stays for more time, some order will be found in this region.ecules.

Finally, when \/CI>X2X+ d)xzyz 3kgT, the rotational motion of Let us consider also the amplitudeof the coherent fluid

the particle does not assume all values#pfand its oscilla- ~ flow. We will compute it in the planar geometry given by Eq.
tory motion becomes restricted to some regions of the dot52) where the eigenvalues are given by EGE) and(51),

main of 6, existing a clear mean alignment. A=0, and\ ==X, therefore,
In order to compute these time averages, &4) is used
t N 2
o make A2=<1—E ke T A 2x . 2
40 T 3kgT+A')  3[N2—9(kgT)?]
dt= 1 , (57 B
I—\/<I>>2<X+CI>§y\/[s+sin 2(6+d)] So, there are two cases to be consideid; 9(kgT)? and
N2>9(kgT)?. The first case leads to an imaginary amplitude
\,\,her,aszlg/,/cpxszr ‘szy- So, and, as for any realistic system we would haxé
>9(kgT)?, it has no physical interest. Consequently, from
— A? now on we will assume
S(¢)=7(3 cos(#-¢)~ 1),
A%=%. (63)
2
A 1 [3cos20—¢)+1]da 59

"6 P(e)Jr e+sin2(6+d) B. The experiment

According to the theory developed above, external fields

where may induce order in the alignment of the anisotropic mol-
do ecules. Furthermore, due to the form of E1) this order
Ple)= | ———, (59 depends on the variables) the direction in which the order
Rye+sin2(6+d) is measured, given by the angleof Eq. (47); (b) a relation

between the symmetric parts of the fluid flow, characterized
by the parameted, given in Eqs(55) and(2); (c) the global
Yharacteristics of the rotational properties of the trajectory
followed by the molecule, described by the paraméter),

and the indeXR under the integration symbol means that the

appearing in Eq(59) gives a real number.

Making x = 6+d, we have as defined in Eq(60); and(d) the amplitudeA of the coher-
2 B ent motion, given by Eqg62) and(63). So, in order to test
D)= A7) 1 [3cosdy—(d+e)]dy 1 the above theory, its predictions will be compared with the
6 |P(e)Jr  (e+sin2y) experimental results obtained when a change to some of

these variables is done. Observe that there are two classes of

z 1 sin2(x)dx } parameters. The oneg, and d, that are connected to the

A .
:?{3S|n2(d+(p)

+ .
P(e) )R (e +sin2v) geometry of the experimental arrangement, and the ones,
) et sinzy R(e) and.A, that come from the dynamics of the rotation of
This equation gives the general expression for the cohethe molecules. We hope that when the shearing drag becomes
ent order parameter. It can be further simplified if we observesufficiently high, these last ones become nearly constant as
that happened, for example, with the amplitudein Eqg. (63).
Hence an easy way to test the validity of the relation given
R(e) 1 sin2(y)dy by Eq.(61) is to change progressively the internal geometry
€)= : of the sample and compare the corresponding experimental
P(e) Jry[e+sin2(0+d)] results with the predictions of the theory.
In order to perform such an investigation, a vessel filled
1te with potassium laurate, KL(26.89%), decanol, DeOH
, (60) (6.34%, and water(66.77%, at the isotropic phase, was
F( b, —— submitted to a shearing drag due to the falling of a metallic
"1+e lamina along an inclined plane, put inside the sample. The
_ alignment induced by such shearing drag was obtained
where ¢=(1/4) 7w+ 2 arcsing) ], F(¢4.K)  through the measurement of the changes in the birefringency
=[§de/J1—K?sirPg is the elliptical integral of first class, along the direction of the gravitational fieldy= /2. For
and E(¢,k) = [§V1—K?sirPgde is the elliptical integral of each measurement the angle,between the direction of the

o

=—g+(1l+e)

second class. So, motion of the lamina and the gravitational field was changed,
42 while the direction along with the birefringency was mea-

Oy ; sured and remained fixed. This change in the angle of the

S(e) 6 {3R(z)sin2(d+¢) +1} (62) inclined plane gives to us the geometrical change. The result-
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205 Dy =5 (9xVy+ 3y Vy) = 3(COSh SiN p3,V + sinp cos¢d, V)
— 184 .
) =19,Vsin2¢.
T 18-
=

. 141 Therefore

=
5 121
: 104 )] cog [ AY
2 sin2d= ————= i
& 0% \/q)>2<x+q)§y 1.
E oo cos ¢(9,V)>+ Zsm2 2¢(9,V)?
G
S 04]
i ] cog ¢
= 02 = =CO0S¢.

001 \/ P 1 -

02 o 05 08 1o 12 14 1o COS ¢+ Sim 2¢

Angle (rad) This is an important relation because it means that the pa-
FIG. 1. Birefringency and transmittance as a function of therameterd does not depend on the dynamical parameters of
angle of the inclined plane in which a metallic lamina falls creatingthe experiment, such as the velocityof the fluid. Therefore
a shearing drag. The angle was measured from the horizontal lin is a genuine geometrical parameter. So,
and arbitrary unities were used in the measurement of the transmit-
tance. The dots represent the points obtained in the measurement —
and the continuous line gives the results of our model. Se)= ?{_3R(8)COS¢+ 1},

2

ing data for the birefringencyBr, are shown in Fig. 1. The put, according to our previous discussion we have

relation between the birefringency and the order parameter is

given by the known relatiofil4] — A? 2

B=aS?’=[S%(¢)]?=a| —{—3R(&)cos¢+1}

Br=a$?, (64) 6
=a(—bcos¢+1)?,

where « is a proportionality constant. In this equation the

order paramete$ is composed of the terms presented in thewherea= a(.A/6)? andb=3R(¢).

last section. One comes from the order imposed by the co- In order to compare the results of this theory with the

herent motion and one comes from the anisotropy introducedxperimental data, shown in Fig. 1, we have looked for the

in the fluctuations by the fluid flow. So, values ofa andb that furnish the best adjustment for these
data. For our theory the value of the parametés immate-
S=S()+ S, rial becausda) it contains the parameter that comes from

Eq. (64) that is outside of our model an@) it is a scale
= ) . = factor and, in the experiment, the birefringency is also mea-
0 A
where S°(¢) was defined in Eq(61) and S® follows from sured save a scale factor. So, to adjust the experimental data

the application of Eq(48), S*=3/2nn;A;;, to the thermal  only the parameteb has physical significance. For the data
order parameter, E444). Above, it has been shown that the gxhibited in Fig. 1 we have obtained

thermal order parameter would be of ordelkkg® and there-

fore it would be small when compared with the coherent of a=1.92 andb=0.87,

the order parameter. Consequently, the present analysis will

be restricted to this last component. So, as the birefringencyhown by the continuous line in Fig. 1.

was measured along the direction of the gravitational field

we havee= /2, and hence V. CONCLUSION AND PERSPECTIVES

_ A2 ) In this work we have presented a theory for the induced

SO((P):?{—3R(8)SIn 2d+1}. alignment of the molecules of the isotropic dense fluids,
which at lower temperatures are in the nematic phase. We

. . have applied this theory to the case in which the sample is
According to Eq.(55) one has sin@=® /P, + Py In - gypmitted to a shearing drag and the experimental results

order to compute the values of these terms we remember th%ree with theory. An interesting aspect of this approach is

Vx=V cosé, and thatd,=cosd, . So, that it can be applied to many experimental situations. Along
the paper we stressed the action of the external fields and
D= 3V =C0S ¢ 3, V. shearing drag, but any kind of action that causes a fluid flow
can be coupled to Eq13). For example, through the use of
Analogously,V,=V sin ¢, and thatd,=sin ¢4, , and the Navier—Stokes equation we can study how the action of
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pressure gradients can induce local order in these anisotropic

) 1 dw
molecules and how this order travels along the sample. f dt’'[gMO—t’ ZZ_J :
OO | St e
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(A6)

APPENDIX

Here, the solutions of the differential equation

. . Likewise, one can show that
|d2u+ e Al
dt? e} dt utpu= (AD) widw

(—l0?+ B)2+ (Y5w)?

dt’ (i) 12 — 1
will be studied.

Let us begin by considering the case in which the external 1
fields H and G contained in" are considered nulls. Hence = 2959 (A7)
this equation becomes 1
- . Therefore
Id2u+ iS0du+ u=F A2
dt2 71 dt IBU_ . ( )

) ) . kgT
Db=2y'f°kBTf dU[aGP(t-t)P==—. (A8)

As the solution of this equation must fulfill the requirement , _

33 u?=1, that means that the motion of happens on the ~ In the computation of the values @; and D, made
surface of a sphere, it must appear that this is a highly nonabove the effect of the external fields, contained inwas
linear differential equation. But, as it was explained alongnot taken into account. In order to consider it, let us suppose

the text, the parametes is free to be adjusted to fix this that " is time independent or, at least, has a very small time

condition. Ther_efore, ta_kmg adyantage of this degree of free\'/ariation. Furthermore, let us suppose thalas a complete
dom, the solution of this equation can be taken as the solu-

tion of the damped oscillator. set of eigenvalues\?, and eigenvectors;“, satisfying
From Eq.(A2) the Green’s functionsgio(t), are deter- & e (@)(@)
mined by solving the differential equation I-o=N"pt, (A9)
3 3 So we can make
d?Go(t) o) o
=g T TAGM=80.  (A3) ,

3
U=, u,(t)o® and F= > F(t)v*, (A10)
As in Eq.(15), the index 0 indicates that for this parameter «t ot
the external fields are not being considered. Furthermor
observe thatGy(t) does not depend on direction; only
through the external fields df is the anisotropy of the ex-

ternal fields introduced in the Green’s function. By the usual [ 42, M) _duy(t)
procedures it can be shown that | —= S

Swhere the time dependence is put on the coefficien(s)
andF ,(t). Putting these parameters in E§2) we obtain

o +(ﬁ+x<a>>ua<t>]ﬁa=Fa(tﬁw.

Ght)= = f 0" i o) (All)
= . orall j.
o) 2] —| w2+iyf°w+,8 : That leads to the differential equation
Using this equation, the parameter Id u,(t) N yif"d u,(t) F (BN =F (1),
dt? dt
0=275%sT J At (t—t)T? (A5) (A12)

. for the direction of the eigenvecto}“. As the eigenvalues
given by Eq.(19) can be computed fag . It is straightfor- X\ () are (presumably different, the anisotropy of the prob-
ward to show that lem is restored. Furthermore, with the changye \(¥— g’
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the differential equations given by Eq#2) and (A12) be-
come formally identical.

Therefore, along the directions
given by v¢, this differential equation describes forced

PHYSICAL REVIEW E 64 021707

2 Jdt'[g<i><t—t'>]2=2 Jdt’[g“(t—t’)]2

damped oscillations, where the elastic constants are given by 1

B+ In order to obtain the law of transformation for

these objects to the baéewe make

vi=vle, (A13)
but, using Eq(A10) we have
3 3 3
U=2 U (hv*=2 2 uofe. (Al
=1 a=1i=1
So,
3
U= uus. (A15)
a=1
Likewise
3
Gl(t—t")= 2 viGe(t—t"). (A16)
a=1
Furthermore
3 3 3 3
:E EEEU avvele]
a=1p=1i=1j=1
3 3 3
= ugu o
a=1 ,le IZ A oVl U '
3 3 3 3 3
:ZZZ UUUIZZ ZluBua(saB

(A7)

3
> (uy)2
a=1

From these relations it follows that

2 2@y AP

and

> fdt’[atg‘”<t—t’)]2=2 fdt’[cag(“)(t—t’)]2

keT  kgT
= T—:3EI’— (A19)
Therefore
- kgT
Z B, =29 OkBTE fdt [G@(t—t")]?=2,
a ﬁ-l—)\(a)
(A20)
and
[ iSO ’ () 12 kBT
2, D'=2y1%eT2, | dU[aG(t-t)=2 ==
3kgT
= . (A21)
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